class
SO2The SO2 class
Static methods
Methods
- def act(self, p: numpy.ndarray[numpy.float64[2, 1]], J_out_self: typing.Optional[numpy.ndarray[numpy.float64[2, 1], flags.writeable]] = None, J_out_p: typing.Optional[numpy.ndarray[numpy.float64[2, 2], flags.writeable, flags.c_contiguous]] = None) -> numpy.ndarray[numpy.float64[2, 1]]
- Get the action of the Lie group object on a point.
- def adj(self, /) -> numpy.ndarray[numpy.float64[1, 1]]
- Return the Adjoint of the Lie group object self.
- def angle(self, /) -> float
- def between(self, other: manifpy._bindings._SO2Base, J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None, J_out_other: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2
- Return the between of self and another object of the same Lie group.
- def coeffs(self, /) -> numpy.ndarray[numpy.float64[2, 1]]
- Get a reference to underlying data.
- def coeffs_copy(self, /) -> numpy.ndarray[numpy.float64[2, 1]]
- Return a copy of underlying data.
- def compose(self, other: manifpy._bindings._SO2Base, J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None, J_out_other: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2
- Return the composition of self and another object of the same Lie group.
- def imag(self, /) -> float
- def inverse(self, J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2
- Return the inverse of the Lie group object.
- def isApprox(self, other: manifpy._bindings._SO2Base, eps: float = 1e-10) -> bool
- Evaluate whether self and other are 'close'.
- def lminus(self, other: manifpy._bindings._SO2Base, J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None, J_out_other: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2Tangent
- Left ominus operation of the Lie group.
- def log(self, J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2Tangent
- Return the corresponding Lie algebra element in vector form.
- def lplus(self, tau: manifpy._bindings._SO2TangentBase, J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None, J_mout_tau: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2
- Left oplus operation of the Lie group.
- def minus(self, other: manifpy._bindings._SO2Base, J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None, J_out_other: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2Tangent
- An alias for the 'rminus' function.
- def normalize(self, /) -> None
- def plus(self, tau: manifpy._bindings._SO2TangentBase, J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None, J_mout_tau: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2
- An alias for the 'rplus' function.
- def real(self, /) -> float
- def rminus(self, other: manifpy._bindings._SO2Base, J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None, J_out_other: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2Tangent
- Right ominus operation of the Lie group.
- def rotation(self, /) -> numpy.ndarray[numpy.float64[2, 2]]
- Get the rotation matrix
- def rplus(self, tau: manifpy._bindings._SO2TangentBase, J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None, J_out_tau: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2
- Right oplus operation of the Lie group.
- def setIdentity(self, /) -> SO2
- Set self to the Lie group Identity.
- def setRandom(self, /) -> SO2
- Set self to a random value.
- def transform(self, /) -> numpy.ndarray[numpy.float64[3, 3]]
- Get the transformation matrix
Special methods
- def __add__(self, arg0: SO2Tangent, /) -> SO2
- Operator overload for the 'plus' function.
- def __eq__(self, arg0: SO2, /) -> bool
- Operator overload for the 'isApprox' function.
- def __init__(self, /) -> None
- Default constructor, uninitialized data.
- def __init__(self, arg0: numpy.ndarray[numpy.float64[2, 1]], /) -> None
- Constructor given data vector.
- def __init__(self, arg0: float, /) -> None
- def __init__(self, arg0: float, arg1: float, /) -> None
- def __mul__(self, arg0: SO2, /) -> SO2
- Operator overload for the 'compose' function.
- def __str__(self, /) -> str
- def __sub__(self, arg0: SO2, /) -> SO2Tangent
- Operator overload for the 'minus' function.
Data
Method documentation
def manifpy. _bindings. SO2. act(self,
p: numpy.ndarray[numpy.float64[2, 1]],
J_out_self: typing.Optional[numpy.ndarray[numpy.float64[2, 1], flags.writeable]] = None,
J_out_p: typing.Optional[numpy.ndarray[numpy.float64[2, 2], flags.writeable, flags.c_contiguous]] = None) -> numpy.ndarray[numpy.float64[2, 1]]
Get the action of the Lie group object on a point.
Parameters ---------- p : numpy.array A point. J_out_self [out] : numpy.ndarray Jacobian of the new object wrt self. J_out_p [out] : numpy.ndarray Jacobian of the new object wrt input point.
def manifpy. _bindings. SO2. adj(self, /) -> numpy.ndarray[numpy.float64[1, 1]]
Return the Adjoint of the Lie group object self.
See Eq. (29).
def manifpy. _bindings. SO2. between(self,
other: manifpy._bindings._SO2Base,
J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None,
J_out_other: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2
Return the between of self and another object of the same Lie group.
Parameters ---------- other : Lie group Another object of the same Lie group. J_out_self [out] : numpy.ndarray Jacobian of the composition wrt self. J_out_other [out] : numpy.ndarray Jacobian of the composition wrt other.
def manifpy. _bindings. SO2. compose(self,
other: manifpy._bindings._SO2Base,
J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None,
J_out_other: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2
Return the composition of self and another object of the same Lie group.
See Eqs. (1,2,3,4).
Parameters ---------- other : Lie group Another object of the same Lie group. J_out_self [out] : numpy.ndarray Jacobian of the composition wrt self. J_out_other [out] : numpy.ndarray Jacobian of the composition wrt other.
def manifpy. _bindings. SO2. isApprox(self,
other: manifpy._bindings._SO2Base,
eps: float = 1e-10) -> bool
Evaluate whether self and other are 'close'.
Parameters ---------- other : Lie group Another object of the same Lie group. eps : double Threshold for equality comparison. Default: 1e-10.
def manifpy. _bindings. SO2. lminus(self,
other: manifpy._bindings._SO2Base,
J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None,
J_out_other: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2Tangent
Left ominus operation of the Lie group.
See Eq. (28).
Parameters ---------- other : Lie group Another element of the same Lie group. J_out_self [out] : numpy.ndarray Jacobian of the ominus operation wrt self. J_out_other [out] : numpy.ndarray Jacobian of the ominus operation wrt other.
def manifpy. _bindings. SO2. log(self,
J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2Tangent
Return the corresponding Lie algebra element in vector form.
Eq. (24).
Parameters ---------- J_out_self [out] : numpy.ndarray Jacobian of the log wrt self.
def manifpy. _bindings. SO2. lplus(self,
tau: manifpy._bindings._SO2TangentBase,
J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None,
J_mout_tau: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2
Left oplus operation of the Lie group.
See Eq. (27).
Parameters ---------- tau : Lie group tangent An element of the tangent of the Lie group. J_out_self [out] : numpy.ndarray Jacobian of the oplus operation wrt self. J_out_tau [out] : numpy.ndarray Jacobian of the oplus operation wrt tau.
def manifpy. _bindings. SO2. rminus(self,
other: manifpy._bindings._SO2Base,
J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None,
J_out_other: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2Tangent
Right ominus operation of the Lie group.
See Eq. (26).
Parameters ---------- other : Lie group Another element of the same Lie group. J_out_self [out] : numpy.ndarray Jacobian of the ominus operation wrt self. J_out_other [out] : numpy.ndarray Jacobian of the ominus operation wrt other.
def manifpy. _bindings. SO2. rplus(self,
tau: manifpy._bindings._SO2TangentBase,
J_out_self: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None,
J_out_tau: typing.Optional[numpy.ndarray[numpy.float64[1, 1], flags.writeable]] = None) -> SO2
Right oplus operation of the Lie group.
See Eq. (25).
Parameters ---------- tau : Lie group tangent An element of the tangent of the Lie group. J_out_self [out] : numpy.ndarray Jacobian of the oplus operation wrt self. J_out_tau [out] : numpy.ndarray Jacobian of the oplus operation wrt tau.