Program Listing for File SO3_base.h

Return to documentation for file (manif/impl/so3/SO3_base.h)

#ifndef _MANIF_MANIF_SO3_BASE_H_
#define _MANIF_MANIF_SO3_BASE_H_

#include "manif/impl/so3/SO3_properties.h"
#include "manif/impl/lie_group_base.h"
#include "manif/impl/utils.h"

namespace manif {

//
// LieGroup
//

template <typename _Derived>
struct SO3Base : LieGroupBase<_Derived>
{
private:

  using Base = LieGroupBase<_Derived>;
  using Type = SO3Base<_Derived>;

public:

  MANIF_GROUP_TYPEDEF
  MANIF_INHERIT_GROUP_AUTO_API
  MANIF_INHERIT_GROUP_OPERATOR

  using Base::coeffs;

  using Rotation       = typename internal::traits<_Derived>::Rotation;
  using Transformation = typename internal::traits<_Derived>::Transformation;
  using QuaternionDataType = Eigen::Quaternion<Scalar>;

protected:

  using Base::derived;

  MANIF_DEFAULT_CONSTRUCTOR(SO3Base)

public:

  MANIF_GROUP_ML_ASSIGN_OP(SO3Base)

  // LieGroup common API


  LieGroup inverse(OptJacobianRef J_minv_m = {}) const;

  Tangent log(OptJacobianRef J_t_m = {}) const;

  MANIF_DEPRECATED
  Tangent lift(OptJacobianRef J_t_m = {}) const;

  template <typename _DerivedOther>
  LieGroup compose(const LieGroupBase<_DerivedOther>& m,
                   OptJacobianRef J_mc_ma = {},
                   OptJacobianRef J_mc_mb = {}) const;

  template <typename _EigenDerived>
  Eigen::Matrix<Scalar, 3, 1>
  act(const Eigen::MatrixBase<_EigenDerived> &v,
      tl::optional<Eigen::Ref<Eigen::Matrix<Scalar, 3, 3>>> J_vout_m = {},
      tl::optional<Eigen::Ref<Eigen::Matrix<Scalar, 3, 3>>> J_vout_v = {}) const;

  Jacobian adj() const;

  // SO3 specific functions

  Transformation transform() const;

  Rotation rotation() const;

  Scalar x() const;
  Scalar y() const;
  Scalar z() const;
  Scalar w() const;

  QuaternionDataType quat() const;

  void normalize();

  void quat(const QuaternionDataType& quaternion);

  template <typename _EigenDerived>
  void quat(const Eigen::MatrixBase<_EigenDerived>& quaternion);
};

template <typename _Derived>
typename SO3Base<_Derived>::Transformation
SO3Base<_Derived>::transform() const
{
  Transformation T = Transformation::Identity();
  T.template topLeftCorner<3,3>() = rotation();
  return T;
}

template <typename _Derived>
typename SO3Base<_Derived>::Rotation
SO3Base<_Derived>::rotation() const
{
  return quat().matrix();
}

template <typename _Derived>
typename SO3Base<_Derived>::LieGroup
SO3Base<_Derived>::inverse(OptJacobianRef J_minv_m) const
{
  if (J_minv_m)
  {
    *J_minv_m = -rotation();
  }

  return LieGroup(quat().conjugate());
}

template <typename _Derived>
typename SO3Base<_Derived>::Tangent
SO3Base<_Derived>::log(OptJacobianRef J_t_m) const
{
  using std::sqrt;
  using std::atan2;

  Tangent tan;
  Scalar log_coeff;

  const Scalar sin_angle_squared = coeffs().template head<3>().squaredNorm();
  if (sin_angle_squared > Constants<Scalar>::eps)
  {
    const Scalar sin_angle = sqrt(sin_angle_squared);
    const Scalar cos_angle = w();

    const Scalar two_angle = Scalar(2.0) * ((cos_angle < Scalar(0.0)) ?
                                 Scalar(atan2(-sin_angle, -cos_angle)) :
                                 Scalar(atan2( sin_angle,  cos_angle)));

    log_coeff = two_angle / sin_angle;
  }
  else
  {
    // small-angle approximation
    log_coeff = Scalar(2.0);
  }

  tan = Tangent(coeffs().template head<3>() * log_coeff);

//  using std::atan2;
//  Scalar n = coeffs().template head<3>().norm();
//  Scalar angle(0);
//  typename Tangent::DataType axis(1,0,0);
//  if (n<Constants<Scalar>::eps)
//    n = coeffs().template head<3>().stableNorm();
//  if (n > Scalar(0))
//  {
//    angle = Scalar(2)*atan2(n, w());
//    axis  = coeffs().template head<3>() / n;
//  }

//  tan = Tangent(axis*angle);

  if (J_t_m)
  {
    J_t_m->setIdentity();
    J_t_m->noalias() += Scalar(0.5) * tan.hat();
    Scalar theta2 = tan.coeffs().squaredNorm();
    if (theta2 > Constants<Scalar>::eps)
    {
      Scalar theta = sqrt(theta2);  // rotation angle
      J_t_m->noalias() +=
        (Scalar(1) / theta2 - (Scalar(1) + cos(theta)) / (Scalar(2) * theta * sin(theta))) *
        tan.hat() * tan.hat();
    }
  }

  return tan;
}

template <typename _Derived>
typename SO3Base<_Derived>::Tangent
SO3Base<_Derived>::lift(OptJacobianRef J_t_m) const
{
  return log(J_t_m);
}

template <typename _Derived>
template <typename _DerivedOther>
typename SO3Base<_Derived>::LieGroup
SO3Base<_Derived>::compose(
    const LieGroupBase<_DerivedOther>& m,
    OptJacobianRef J_mc_ma,
    OptJacobianRef J_mc_mb) const
{
  using std::abs;

  static_assert(
    std::is_base_of<SO3Base<_DerivedOther>, _DerivedOther>::value,
    "Argument does not inherit from S03Base !");

  const auto& m_SO3 = static_cast<const SO3Base<_DerivedOther>&>(m);

  if (J_mc_ma)
  {
    *J_mc_ma = m_SO3.rotation().transpose();
  }

  if (J_mc_mb)
    J_mc_mb->setIdentity();

  QuaternionDataType ret_q = quat() * m_SO3.quat();

  const Scalar ret_sqnorm = ret_q.squaredNorm();

  if (abs(ret_sqnorm-Scalar(1)) > Constants<Scalar>::eps)
  {
    ret_q.coeffs() *= approxSqrtInv(ret_sqnorm);
  }

  return LieGroup(ret_q);
}

template <typename _Derived>
template <typename _EigenDerived>
Eigen::Matrix<typename SO3Base<_Derived>::Scalar, 3, 1>
SO3Base<_Derived>::act(const Eigen::MatrixBase<_EigenDerived> &v,
                       tl::optional<Eigen::Ref<Eigen::Matrix<Scalar, 3, 3>>> J_vout_m,
                       tl::optional<Eigen::Ref<Eigen::Matrix<Scalar, 3, 3>>> J_vout_v) const
{
  assert_vector_dim(v, 3);
  const Rotation R(rotation());

  if (J_vout_m)
  {
    J_vout_m->noalias() = -R * skew(v);
  }

  if (J_vout_v)
  {
    (*J_vout_v) = R;
  }

  return R * v;
}

template <typename _Derived>
typename SO3Base<_Derived>::Jacobian
SO3Base<_Derived>::adj() const
{
  return rotation();
}

// SO3 specific

template <typename _Derived>
typename SO3Base<_Derived>::Scalar
SO3Base<_Derived>::x() const
{
  return coeffs().x();
}

template <typename _Derived>
typename SO3Base<_Derived>::Scalar
SO3Base<_Derived>::y() const
{
  return coeffs().y();
}

template <typename _Derived>
typename SO3Base<_Derived>::Scalar
SO3Base<_Derived>::z() const
{
  return coeffs().z();
}

template <typename _Derived>
typename SO3Base<_Derived>::Scalar
SO3Base<_Derived>::w() const
{
  return coeffs().w();
}

template <typename _Derived>
typename SO3Base<_Derived>::QuaternionDataType
SO3Base<_Derived>::quat() const
{
  return QuaternionDataType(coeffs());
}

template <typename _Derived>
void SO3Base<_Derived>::normalize()
{
  coeffs().normalize();
}

template <typename _Derived>
void SO3Base<_Derived>::quat(const QuaternionDataType& quaternion)
{
  quat(quaternion.coeffs());
}

template <typename _Derived>
template <typename _EigenDerived>
void SO3Base<_Derived>::quat(const Eigen::MatrixBase<_EigenDerived>& quaternion)
{
  using std::abs;
  assert_vector_dim(quaternion, 4);
  MANIF_ASSERT(abs(quaternion.norm()-Scalar(1)) <
               Constants<Scalar>::eps,
               "The quaternion is not normalized !",
               invalid_argument);

  coeffs() = quaternion;
}

namespace internal {

template <typename Derived>
struct RandomEvaluatorImpl<SO3Base<Derived>>
{
  template <typename T>
  static void run(T& m)
  {
    using Scalar     = typename SO3Base<Derived>::Scalar;
    using LieGroup   = typename SO3Base<Derived>::LieGroup;

    m = LieGroup(randQuat<Scalar>());
  }
};

template <typename Derived>
struct AssignmentEvaluatorImpl<SO3Base<Derived>>
{
  template <typename T>
  static void run_impl(const T& data)
  {
    using std::abs;
    MANIF_ASSERT(
      abs(data.norm()-typename SO3Base<Derived>::Scalar(1)) <
      Constants<typename SO3Base<Derived>::Scalar>::eps,
      "SO3 assigned data not normalized !",
      manif::invalid_argument
    );
    MANIF_UNUSED_VARIABLE(data);
  }
};

template <typename Derived, typename NewScalar>
struct CastEvaluatorImpl<SO3Base<Derived>, NewScalar> {
  template <typename T>
  static auto run(const T& o) -> typename Derived::template LieGroupTemplate<NewScalar> {
    const typename SO3Base<Derived>::QuaternionDataType q = o.quat();

    return typename Derived::template LieGroupTemplate<NewScalar>(
      q.template cast<NewScalar>().normalized()
    );
  }
};

} /* namespace internal */
} /* namespace manif */

#endif /* _MANIF_MANIF_SO3_BASE_H_ */