Program Listing for File SO2_base.h¶
↰ Return to documentation for file (manif/impl/so2/SO2_base.h
)
#ifndef _MANIF_MANIF_SO2_BASE_H_
#define _MANIF_MANIF_SO2_BASE_H_
#include "manif/impl/so2/SO2_properties.h"
#include "manif/impl/lie_group_base.h"
namespace manif {
//
// LieGroup
//
template <typename _Derived>
struct SO2Base : LieGroupBase<_Derived>
{
private:
using Base = LieGroupBase<_Derived>;
using Type = SO2Base<_Derived>;
public:
MANIF_GROUP_TYPEDEF
MANIF_INHERIT_GROUP_AUTO_API
MANIF_INHERIT_GROUP_OPERATOR
using Base::coeffs;
using Rotation = typename internal::traits<_Derived>::Rotation;
using Transformation = typename internal::traits<_Derived>::Transformation;
// LieGroup common API
protected:
using Base::derived;
MANIF_DEFAULT_CONSTRUCTOR(SO2Base)
public:
MANIF_GROUP_ML_ASSIGN_OP(SO2Base)
LieGroup inverse(OptJacobianRef J_minv_m = {}) const;
Tangent log(OptJacobianRef J_t_m = {}) const;
MANIF_DEPRECATED
Tangent lift(OptJacobianRef J_t_m = {}) const;
template <typename _DerivedOther>
LieGroup compose(const LieGroupBase<_DerivedOther>& m,
OptJacobianRef J_mc_ma = {},
OptJacobianRef J_mc_mb = {}) const;
template <typename _EigenDerived>
Eigen::Matrix<Scalar, 2, 1>
act(const Eigen::MatrixBase<_EigenDerived> &v,
tl::optional<Eigen::Ref<Eigen::Matrix<Scalar, 2, 1>>> J_vout_m = {},
tl::optional<Eigen::Ref<Eigen::Matrix<Scalar, 2, 2>>> J_vout_v = {}) const;
Jacobian adj() const;
// SO2 specific functions
Transformation transform() const;
Rotation rotation() const;
Scalar real() const;
Scalar imag() const;
Scalar angle() const;
void normalize();
// protected:
// Scalar& real();
// Scalar& imag();
};
template <typename _Derived>
typename SO2Base<_Derived>::Transformation
SO2Base<_Derived>::transform() const
{
Transformation T(Transformation::Identity());
T.template topLeftCorner<2, 2>() = rotation();
return T;
}
template <typename _Derived>
typename SO2Base<_Derived>::Rotation
SO2Base<_Derived>::rotation() const
{
using std::sin;
using std::cos;
const Scalar theta = angle();
return (Rotation() << cos(theta), -sin(theta),
sin(theta), cos(theta)).finished();
}
template <typename _Derived>
typename SO2Base<_Derived>::LieGroup
SO2Base<_Derived>::inverse(OptJacobianRef J_minv_m) const
{
if (J_minv_m)
J_minv_m->setConstant(Scalar(-1));
return LieGroup(real(), -imag());
}
template <typename _Derived>
typename SO2Base<_Derived>::Tangent
SO2Base<_Derived>::log(OptJacobianRef J_t_m) const
{
if (J_t_m)
J_t_m->setConstant(Scalar(1));
return Tangent(angle());
}
template <typename _Derived>
typename SO2Base<_Derived>::Tangent
SO2Base<_Derived>::lift(OptJacobianRef J_t_m) const
{
return log(J_t_m);
}
template <typename _Derived>
template <typename _DerivedOther>
typename SO2Base<_Derived>::LieGroup
SO2Base<_Derived>::compose(
const LieGroupBase<_DerivedOther>& m,
OptJacobianRef J_mc_ma,
OptJacobianRef J_mc_mb) const
{
using std::abs;
static_assert(
std::is_base_of<SO2Base<_DerivedOther>, _DerivedOther>::value,
"Argument does not inherit from SE2Base !");
if (J_mc_ma)
J_mc_ma->setConstant(Scalar(1));
if (J_mc_mb)
J_mc_mb->setConstant(Scalar(1));
const auto& m_so2 = static_cast<const SO2Base<_DerivedOther>&>(m);
Scalar ret_real = real() * m_so2.real() - imag() * m_so2.imag();
Scalar ret_imag = real() * m_so2.imag() + imag() * m_so2.real();
const Scalar ret_sqnorm = ret_real*ret_real+ret_imag*ret_imag;
if (abs(ret_sqnorm-Scalar(1)) > Constants<Scalar>::eps)
{
const Scalar scale = approxSqrtInv(ret_sqnorm);
ret_real *= scale;
ret_imag *= scale;
}
return LieGroup(ret_real, ret_imag);
}
template <typename _Derived>
template <typename _EigenDerived>
Eigen::Matrix<typename SO2Base<_Derived>::Scalar, 2, 1>
SO2Base<_Derived>::act(const Eigen::MatrixBase<_EigenDerived> &v,
tl::optional<Eigen::Ref<Eigen::Matrix<Scalar, 2, 1>>> J_vout_m,
tl::optional<Eigen::Ref<Eigen::Matrix<Scalar, 2, 2>>> J_vout_v) const
{
assert_vector_dim(v, 2);
const Rotation R(rotation());
if (J_vout_m)
{
J_vout_m->noalias() = R * skew(Scalar(1)) * v;
}
if (J_vout_v)
{
(*J_vout_v) = R;
}
return R * v;
}
template <typename _Derived>
typename SO2Base<_Derived>::Jacobian
SO2Base<_Derived>::adj() const
{
static const Jacobian adj = Jacobian::Constant(Scalar(1));
return adj;
}
// SO2 specific function
template <typename _Derived>
/*const*/ typename SO2Base<_Derived>::Scalar/*&*/
SO2Base<_Derived>::real() const
{
return coeffs().x();
}
template <typename _Derived>
/*const*/ typename SO2Base<_Derived>::Scalar/*&*/
SO2Base<_Derived>::imag() const
{
return coeffs().y();
}
template <typename _Derived>
typename SO2Base<_Derived>::Scalar
SO2Base<_Derived>::angle() const
{
using std::atan2;
return atan2(imag(), real());
}
//template <typename _Derived>
//typename SO2Base<_Derived>::Scalar&
//SO2Base<_Derived>::real()
//{
// return coeffs.x();
//}
//template <typename _Derived>
//typename SO2Base<_Derived>::Scalar&
//SO2Base<_Derived>::imag()
//{
// return coeffs.y();
//}
template <typename _Derived>
void SO2Base<_Derived>::normalize()
{
coeffs().normalize();
}
namespace internal {
template <typename Derived>
struct RandomEvaluatorImpl<SO2Base<Derived>>
{
template <typename T>
static void run(T& m)
{
using Tangent = typename LieGroupBase<Derived>::Tangent;
m = Tangent::Random().exp();
}
};
template <typename Derived>
struct AssignmentEvaluatorImpl<SO2Base<Derived>>
{
template <typename T>
static void run_impl(const T& data)
{
using std::abs;
MANIF_ASSERT(
abs(data.norm()-typename SO2Base<Derived>::Scalar(1)) <
Constants<typename SO2Base<Derived>::Scalar>::eps,
"SO2 assigned data not normalized !",
invalid_argument
);
MANIF_UNUSED_VARIABLE(data);
}
};
template <typename Derived, typename NewScalar>
struct CastEvaluatorImpl<SO2Base<Derived>, NewScalar> {
template <typename T>
static auto run(const T& o) -> typename Derived::template LieGroupTemplate<NewScalar> {
return typename Derived::template LieGroupTemplate<NewScalar>(NewScalar(o.angle()));
}
};
} /* namespace internal */
} /* namespace manif */
#endif /* _MANIF_MANIF_SO2_BASE_H_ */