Program Listing for File SE2Tangent_base.h

Return to documentation for file (manif/impl/se2/SE2Tangent_base.h)

#ifndef _MANIF_MANIF_SE2TANGENT_BASE_H_
#define _MANIF_MANIF_SE2TANGENT_BASE_H_

#include "manif/impl/se2/SE2_properties.h"
#include "manif/impl/tangent_base.h"

namespace manif {

//
// Tangent
//

template <typename _Derived>
struct SE2TangentBase : TangentBase<_Derived>
{
private:

  using Base = TangentBase<_Derived>;
  using Type = SE2TangentBase<_Derived>;

public:

  MANIF_TANGENT_TYPEDEF
  MANIF_INHERIT_TANGENT_API
  MANIF_INHERIT_TANGENT_OPERATOR

  using Base::data;
  using Base::coeffs;

protected:

  using Base::derived;

  MANIF_DEFAULT_CONSTRUCTOR(SE2TangentBase)

public:

  MANIF_TANGENT_ML_ASSIGN_OP(SE2TangentBase)

  // Tangent common API


  LieAlg hat() const;

  LieGroup exp(OptJacobianRef J_m_t = {}) const;

  MANIF_DEPRECATED
  LieGroup retract(OptJacobianRef J_m_t = {}) const;

  Jacobian rjac() const;

  Jacobian rjacinv() const;

  Jacobian ljac() const;

  Jacobian ljacinv() const;

  Jacobian smallAdj() const;

  // SE2Tangent specific API

  Scalar x() const;
  Scalar y() const;
  Scalar angle() const;
};

template <typename _Derived>
typename SE2TangentBase<_Derived>::LieAlg
SE2TangentBase<_Derived>::hat() const
{
  return ( LieAlg() <<
             Scalar(0), -angle(),   x(),
             angle(),    Scalar(0), y(),
             Scalar(0),  Scalar(0), Scalar(0) ).finished();
}

template <typename _Derived>
typename SE2TangentBase<_Derived>::LieGroup
SE2TangentBase<_Derived>::exp(OptJacobianRef J_m_t) const
{
  using std::abs;
  using std::cos;
  using std::sin;

  const Scalar theta = angle();
  const Scalar cos_theta = cos(theta);
  const Scalar sin_theta = sin(theta);
  const Scalar theta_sq = theta * theta;

  Scalar A,  // sin_theta_by_theta
         B;  // one_minus_cos_theta_by_theta

  if (theta_sq < Constants<Scalar>::eps)
  {
    // Taylor approximation
    A = Scalar(1) - Scalar(1. / 6.) * theta_sq;
    B = Scalar(.5) * theta - Scalar(1. / 24.) * theta * theta_sq;
  }
  else
  {
    // Euler
    A = sin_theta / theta;
    B = (Scalar(1) - cos_theta) / theta;
  }

  if (J_m_t)
  {
    // Jr
    J_m_t->setIdentity();
    (*J_m_t)(0,0) =  A;
    (*J_m_t)(0,1) =  B;
    (*J_m_t)(1,0) = -B;
    (*J_m_t)(1,1) =  A;

    if (theta_sq < Constants<Scalar>::eps)
    {
      (*J_m_t)(0,2) = -y() / Scalar(2) + theta * x() / Scalar(6);
      (*J_m_t)(1,2) =  x() / Scalar(2) + theta * y() / Scalar(6);
    }
    else
    {
      (*J_m_t)(0,2) = (-y() + theta*x() + y()*cos_theta - x()*sin_theta)/theta_sq;
      (*J_m_t)(1,2) = ( x() + theta*y() - x()*cos_theta - y()*sin_theta)/theta_sq;
    }
  }

  return LieGroup( A * x() - B * y(),
                   B * x() + A * y(),
                   cos_theta, sin_theta );
}

template <typename _Derived>
typename SE2TangentBase<_Derived>::LieGroup
SE2TangentBase<_Derived>::retract(OptJacobianRef J_m_t) const
{
  return exp(J_m_t);
}

template <typename _Derived>
typename SE2TangentBase<_Derived>::Jacobian
SE2TangentBase<_Derived>::rjac() const
{
//  const Scalar theta = angle();
//  const Scalar cos_theta = cos(theta);
//  const Scalar sin_theta = sin(theta);
//  const Scalar theta_sq = theta * theta;

//  Scalar A,  // sin_theta_by_theta
//         B;  // one_minus_cos_theta_by_theta

//  if (abs(theta) < Constants<Scalar>::eps)
//  {
//    // Taylor approximation
//    A = Scalar(1) - Scalar(1. / 6.) * theta_sq;
//    B = Scalar(.5) * theta - Scalar(1. / 24.) * theta * theta_sq;
//  }
//  else
//  {
//    // Euler
//    A = sin_theta / theta;
//    B = (Scalar(1) - cos_theta) / theta;
//  }

//  Jacobian Jr = Jacobian::Identity();
//  Jr(0,0) =  A;
//  Jr(0,1) =  B;
//  Jr(1,0) = -B;
//  Jr(1,1) =  A;

//  Jr(0,2) = (-y() + theta*x() + y()*cos_theta - x()*sin_theta)/theta_sq;
//  Jr(1,2) = ( x() + theta*y() - x()*cos_theta - y()*sin_theta)/theta_sq;

//  return Jr;

  Jacobian Jr;
  exp(Jr);

  return Jr;
}

template <typename _Derived>
typename SE2TangentBase<_Derived>::Jacobian
SE2TangentBase<_Derived>::rjacinv() const
{
  using std::abs;
  using std::cos;
  using std::sin;

  const Scalar theta = angle();
  const Scalar cos_theta = cos(theta);
  const Scalar sin_theta = sin(theta);
  const Scalar theta_sq = theta * theta;

  Scalar A,  // theta_sin_theta
         B;  // theta_cos_theta

  A = theta*sin_theta;
  B = theta*cos_theta;

  Jacobian Jrinv;

  Jrinv(0,1) = -theta*Scalar(0.5);
  Jrinv(1,0) = -Jrinv(0,1);

  if (theta_sq > Constants<Scalar>::eps)
  {
    Jrinv(0,0) = -A/(Scalar(2)*cos_theta-Scalar(2));
    Jrinv(1,1) =  Jrinv(0,0);

    Scalar den = Scalar(2)*theta*(cos_theta-Scalar(1));
    Jrinv(0,2) = (A*x() + B*y() - theta*y() + Scalar(2)*x()*cos_theta - Scalar(2)*x()) / den;
    Jrinv(1,2) = (-B*x() + A*y() + theta*x() + Scalar(2)*y()*cos_theta - Scalar(2)*y()) / den;
  }
  else
  {
    Jrinv(0,0) = Scalar(1)-theta_sq/Scalar(12);
    Jrinv(1,1) =  Jrinv(0,0);

    Jrinv(0,2) =  y()/Scalar(2) + theta*x()/Scalar(12);
    Jrinv(1,2) = -x()/Scalar(2) + theta*y()/Scalar(12);
  }

  Jrinv(2,0) = Scalar(0);
  Jrinv(2,1) = Scalar(0);
  Jrinv(2,2) = Scalar(1);

  return Jrinv;
}

template <typename _Derived>
typename SE2TangentBase<_Derived>::Jacobian
SE2TangentBase<_Derived>::ljac() const
{
  using std::cos;
  using std::sin;

  const Scalar theta = angle();
  const Scalar cos_theta = cos(theta);
  const Scalar sin_theta = sin(theta);
  const Scalar theta_sq = theta * theta;

  Scalar A,  // sin_theta_by_theta
         B;  // one_minus_cos_theta_by_theta

  if (theta_sq < Constants<Scalar>::eps)
  {
    // Taylor approximation
    A = Scalar(1) - Scalar(1. / 6.) * theta_sq;
    B = Scalar(.5) * theta - Scalar(1. / 24.) * theta * theta_sq;
  }
  else
  {
    // Euler
    A = sin_theta / theta;
    B = (Scalar(1) - cos_theta) / theta;
  }

  Jacobian Jl = Jacobian::Identity();
  Jl(0,0) =  A;
  Jl(0,1) = -B;
  Jl(1,0) =  B;
  Jl(1,1) =  A;

  if (theta_sq < Constants<Scalar>::eps)
  {
    Jl(0,2) =  y() / Scalar(2) + theta * x() / Scalar(6);
    Jl(1,2) = -x() / Scalar(2) + theta * y() / Scalar(6);
  }
  else
  {
    Jl(0,2) = ( y() + theta*x() - y()*cos_theta - x()*sin_theta)/theta_sq;
    Jl(1,2) = (-x() + theta*y() + x()*cos_theta - y()*sin_theta)/theta_sq;
  }

  return Jl;
}

template <typename _Derived>
typename SE2TangentBase<_Derived>::Jacobian
SE2TangentBase<_Derived>::ljacinv() const
{
  using std::abs;
  using std::cos;
  using std::sin;

  const Scalar theta = angle();
  const Scalar cos_theta = cos(theta);
  const Scalar sin_theta = sin(theta);
  const Scalar theta_sq = theta * theta;

  Scalar A,  // theta_sin_theta
         B;  // theta_cos_theta

  A = theta*sin_theta;
  B = theta*cos_theta;

  Jacobian Jlinv;

  Jlinv(0,1) =  theta*Scalar(0.5);
  Jlinv(1,0) = -Jlinv(0,1);

  if (theta_sq > Constants<Scalar>::eps)
  {
    Jlinv(0,0) = -A/(Scalar(2)*cos_theta-Scalar(2));
    Jlinv(1,1) =  Jlinv(0,0);

    Scalar den = Scalar(2)*theta*(cos_theta-Scalar(1));
    Jlinv(0,2) = (A*x() - B*y() + theta*y() + Scalar(2)*x()*cos_theta - Scalar(2)*x()) / den;
    Jlinv(1,2) = (B*x() + A*y() - theta*x() + Scalar(2)*y()*cos_theta - Scalar(2)*y()) / den;
  }
  else
  {
    Jlinv(0,0) = Scalar(1)-theta_sq/Scalar(12);
    Jlinv(1,1) = Jlinv(0,0);

    Jlinv(0,2) = -y()/Scalar(2) + theta*x()/Scalar(12);
    Jlinv(1,2) =  x()/Scalar(2) + theta*y()/Scalar(12);
  }

  Jlinv(2,0) = Scalar(0);
  Jlinv(2,1) = Scalar(0);
  Jlinv(2,2) = Scalar(1);

  return Jlinv;
}

template <typename _Derived>
typename SE2TangentBase<_Derived>::Jacobian
SE2TangentBase<_Derived>::smallAdj() const
{
  Jacobian smallAdj = Jacobian::Zero();

  smallAdj(0,1) = -angle();
  smallAdj(1,0) =  angle();
  smallAdj(0,2) =  y();
  smallAdj(1,2) = -x();

  return smallAdj;
}

// SE2Tangent specific API

template <typename _Derived>
typename SE2TangentBase<_Derived>::Scalar
SE2TangentBase<_Derived>::x() const
{
  return coeffs().x();
}

template <typename _Derived>
typename SE2TangentBase<_Derived>::Scalar
SE2TangentBase<_Derived>::y() const
{
  return coeffs().y();
}

template <typename _Derived>
typename SE2TangentBase<_Derived>::Scalar
SE2TangentBase<_Derived>::angle() const
{
  return coeffs().z();
}

namespace internal {

template <typename Derived>
struct GeneratorEvaluator<SE2TangentBase<Derived>>
{
  static typename SE2TangentBase<Derived>::LieAlg
  run(const unsigned int i)
  {
    using LieAlg = typename SE2TangentBase<Derived>::LieAlg;
    using Scalar = typename SE2TangentBase<Derived>::Scalar;

    switch (i)
    {
      case 0:
      {
        const static LieAlg E0(
                (LieAlg() << Scalar(0), Scalar(0), Scalar(1),
                             Scalar(0), Scalar(0), Scalar(0),
                             Scalar(0), Scalar(0), Scalar(0) ).finished());
        return E0;
      }
      case 1:
      {
        const static LieAlg E1(
                (LieAlg() << Scalar(0), Scalar(0), Scalar(0),
                             Scalar(0), Scalar(0), Scalar(1),
                             Scalar(0), Scalar(0), Scalar(0) ).finished());
        return E1;
      }
      case 2:
      {
        const static LieAlg E2(
                (LieAlg() << Scalar(0), Scalar(-1), Scalar(0),
                             Scalar(1), Scalar( 0), Scalar(0),
                             Scalar(0), Scalar( 0), Scalar(0) ).finished());
        return E2;
      }
      default:
        MANIF_THROW("Index i must be in [0,2]!", invalid_argument);
        break;
    }

    return LieAlg{};
  }
};

template <typename Derived>
struct InnerWeightsEvaluator<SE2TangentBase<Derived>>
{
  static typename Derived::InnerWeightsMatrix
  run()
  {
    using InnerWeightsMatrix = typename SE2TangentBase<Derived>::InnerWeightsMatrix;
    using Scalar = typename SE2TangentBase<Derived>::Scalar;

    const static InnerWeightsMatrix W(
      (InnerWeightsMatrix() << Scalar(1), Scalar(0), Scalar(0),
                               Scalar(0), Scalar(1), Scalar(0),
                               Scalar(0), Scalar(0), Scalar(2) ).finished()
    );

    return W;
  }
};

template <typename Derived>
struct RandomEvaluatorImpl<SE2TangentBase<Derived>>
{
  static void run(SE2TangentBase<Derived>& m)
  {
    m.coeffs().setRandom();         // in [-1,1]
    m.coeffs().coeffRef(2) *= MANIF_PI; // in [-PI,PI]
  }
};

template <typename Derived>
struct VeeEvaluatorImpl<SE2TangentBase<Derived>> {
  template <typename TL, typename TR>
  static void run(TL& t, const TR& v) {
    t.coeffs() << v(0, 2), v(1, 2), v(1, 0);
  }
};

} /* namespace internal */
} /* namespace manif */

#endif /* _MANIF_MANIF_SE2_BASE_H_ */